VANDERBILT

Autonomous Vehicles
Team Star Tech Stack

Raj Chopra, Teyon Herring, Siddharth Shah, Aditya Shrey



Challenge Overview

Objective: Have a fully autonomous
vehicle operate within a defined city-like
environment and pick up passengers as
instructed.
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Problem Modules

Localization Motion Planning

Routing Perception
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Particle Filtering for Localization
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VehicleState
Position ::

Particle Filtering for Localization PSS

Velocity::

AngularVelocity ::
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A* Algorithm for

Graph Representation

of all Road Segments Children are feasible

road segments

Road Segments are
vertices
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Stanley Controller for Motion Planning

Build Polyline
Representation to
Target

Follow the Stanley

Control Law
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https://medium.com/roboquest/understanding-geometric-path-tracking-algorithms-stanley-controller-25da17bcc219

EKF for Perception

Enter X, P,

Prediction state
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https://www.sciencedirect.com/topics/computer-science/extended-kalman-filter


https://www.sciencedirect.com/topics/computer-science/extended-kalman-filter

EKF for Perception

Enter X, P,

Prediction state
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“Big Box == Stop” for Perception

Image
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“Big Box == Stop” for Perception -
Image

If intersection >
threshold, then stop
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Testing and Evaluation

Implement/test the Modules separately
Ensure that every module works on its own

Observe the Simulations

Routing: Is ego vehicle moving in the right direction?

Motion Planning: |s ego vehicle moving in the right direction? Stopping when appropriate?
Perception: Do we identify other vehicles are in front of us?

Compare to Ground Truth
Localization, Routing, Motion Planning, Perception
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