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Abstract—Web-based navigation and content understanding
rely heavily on alternative text descriptions for images, especially
when speech-to-text systems are employed. However, these image
captions are often incomplete, noisy, or missing. In this work, we
propose a system that utilizes a Vision-Language Model (VLM)
to synthesize accurate and contextually rich image captions. This
approach aims to improve the accessibility and user experience
for visually-impaired users and others who rely on screen readers.
Additionally, we describe the design, implementation, and evalua-
tion of a scalable, containerized cloud-based system that simulates
the computational demands of such a VLM-based solution and
explores various scheduling and load-balancing strategies. The
code is available at https://github.com/2021sshah/cloud-latency-
forecast-scheduling.

Index Terms—accessibility tool, web-based navigation, vision-
language model, load balancing

I. INTRODUCTION

Accessibility of web content for visually-impaired users of-
ten relies on screen readers and speech-to-text (STT) systems.
These systems translate on-screen text to spoken language,
enabling easier navigation and comprehension of digital con-
tent. However, images on the web frequently lack suitable
alternative text (alt-text). In many cases, the alt-text is noisy,
inaccurate, or altogether absent, rendering the images inacces-
sible and limiting the overall utility of STT tools. This gap
poses a significant challenge: how to ensure that all users,
regardless of visual ability, can fully understand and benefit
from the information conveyed by images.

Recent advancements in Vision-Language Models (VLMs)
present a promising opportunity to address this accessibility
gap. VLMs leverage deep learning techniques to associate
visual content (images) with semantic concepts and produce
descriptive textual content. These models can generate cap-
tions that not only identify objects in images but also describe
scenes, relationships, and contexts, thereby potentially offering
far richer and more accurate alt-text.

In this work, we propose a system that integrates a VLM to
provide synthetic image captions in real-time. The system runs
in a cloud-based environment designed for horizontal scaling,
ensuring that large numbers of images can be processed
efficiently. To manage the distribution of incoming tasks
(image captioning requests), we explore multiple scheduling
strategies. We first simulate a producer-consumer workflow to

model real-world scenarios where external clients send image-
captioning requests. The scheduler balances these tasks across
multiple ML servers, which, in a resource-constrained approxi-
mation, fetch and resize images and introduce artificial latency
to simulate VLM inference time. The final results, including
image URLs, original captions, and synthesized captions, are
consolidated into a database, enabling downstream analysis
and performance evaluation.

II. CONTRIBUTIONS

This work makes the following key contributions:
1) End-to-End Prototype: We design and implement a

complete prototype system that integrates producer,
scheduler, ML servers, and a database to demonstrate
the feasibility of synthetic caption generation at scale.

2) Scalable Infrastructure: By containerizing each com-
ponent and orchestrating them with Kubernetes, we
highlight an architecture capable of horizontal scaling,
ensuring that the system can adapt to varying demand.

3) Scheduling Algorithm Evaluation: We implement and
compare various scheduling algorithms—ranging from
simple random and round-robin approaches to more
advanced latency-aware and predictive strategies—to
understand trade-offs between complexity and efficiency.

4) Performance Analysis: We present an empirical evalu-
ation of the system using a subset of the MS COCO
dataset, detailing how different scheduling strategies
impact latency, throughput, and overall system perfor-
mance.

III. RELATED WORK

The challenge of generating coherent and contextually ac-
curate captions for images has inspired substantial research
within the computer vision and natural language processing
(NLP) communities. Early image captioning efforts often
relied on template-based methods that described images by
detecting objects and associating them with fixed syntactic
structures [3]. These approaches were limited by the manual
engineering required and the difficulty of capturing complex
scenes.

With the advent of deep learning, neural image caption-
ing models coupled convolutional neural networks (CNNs)
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for image feature extraction with recurrent neural networks
(RNNs) or Transformers for language generation [2], [8], [9].
These end-to-end trainable models demonstrated significantly
improved caption quality, largely due to their ability to learn
rich image and text representations jointly.

Subsequent Vision-Language Models have extended beyond
image captioning to encompass a variety of multimodal tasks,
including visual question answering, image retrieval, and
object grounding [6], [7]. These models leverage large-scale
pretraining on datasets like MS COCO [5] and increasingly
complex architectures to learn semantically meaningful image-
text alignments.

While much existing research focuses on improving the
quality and accuracy of captions, fewer works address the
system-level challenges of making these captioning services
accessible at scale. Approaches that integrate model infer-
ence into production systems often consider load balancing,
latency optimization, and fault tolerance [1], [4]. Our work
builds on this body of literature by implementing a practical,
horizontally scalable system and exploring various scheduling
strategies to ensure efficient and timely caption generation—an
essential requirement for real-world accessibility tools.

IV. DESIGN AND ARCHITECTURE

To evaluate the performance of various scheduling algo-
rithms, our system simulates a producer-consumer workflow.
The producer generates requests containing an image URL,
an original caption, and a unique identifier, which are sent to
a scheduling component. This scheduler implements multiple
load-balancing algorithms, with more advanced algorithms
leveraging latency feedback from the ML server to make
informed task distribution decisions. In a real-world scenario,
the ML server would handle both retrieving the image from
the web server and performing inference tasks with a Vision-
Language Model (VLM) (Figure 1). However, due to resource
constraints, we approximated this by resizing the image us-
ing a computationally inexpensive convolution operation and
introducing a randomized delay to simulate the workload
typically handled by a VLM (Figure 2). After the simulated
inference, the processed data—including the image URL,
original caption, unique ID, and output from the ML server—is
consolidated in a single database.

A. Producer

The producer is responsible for generating and sending
data packets to the scheduler. Each data packet includes three
elements: the URL of the image, its associated caption, and a
unique identifier. This component emulates real-world scenar-
ios where external systems send requests for processing. By
designing the producer to generate consistent workloads, we
ensured the system could test different scheduling strategies
under similar conditions.

B. Scheduler

The scheduler acts as the central decision-making entity in
the system, tasked with implementing various load-balancing

Fig. 1. System design where the ML server performs the inference task,
converting the image to a caption.

Fig. 2. System design where the ML server resizes the image and applies
simulated load to mimic a real-world VLM workload.

algorithms to distribute tasks among ML servers efficiently
(Figure 3). Basic algorithms operate without additional con-
text, offering simplicity and low computational overhead.
In contrast, more sophisticated algorithms leverage feedback
from ML servers, such as latency or workload data, to make
informed decisions. This component was designed with ex-
tensibility in mind, enabling us to explore trade-offs between
computational complexity and task distribution efficiency.
Below, we detail the load-balancing strategies implemented
within the scheduler.

Random Scheduling: The random scheduling algorithm as-
signs each incoming task Ti to one of the N available ML
servers with uniform probability:

P (Sj | Ti) =
1

N
, j ∈ {1, 2, . . . , N},

where P (Sj | Ti) represents the probability of assigning task
Ti to server Sj . This approach requires minimal computation
and avoids any reliance on server state or history. While it
ensures fairness in distribution over a large number of tasks, it
does not account for varying server loads, leading to potential
bottlenecks during operation.

Round Robin Scheduling: In the round-robin algorithm,
tasks are assigned to servers in a cyclic order. For task Ti,



the selected server Sj is determined by:

j = (i mod N) + 1, i ∈ {1, 2, . . . },

where N is the total number of servers. This method guaran-
tees that all servers are utilized equally over time. However,
it assumes that all tasks impose a uniform workload, which
may not hold in practice. As a result, server performance can
degrade under uneven or unpredictable task distributions.

Lowest Historical Average: This informed scheduling algo-
rithm assigns tasks based on the historical average latency of
each server. Let L(k)

j denote the latency of server Sj for the
k-th completed task, and let Hj represent its historical average
latency:

Hj =
1

Kj

Kj∑
k=1

L
(k)
j ,

where Kj is the total number of tasks completed by server
Sj . The scheduler assigns the next task Ti to the server with
the lowest Hj . By prioritizing servers with better historical
performance, this algorithm seeks to minimize overall latency.
However, its reliance on past data makes it less adaptable to
sudden changes in server performance.

Least Ongoing Tasks: The least ongoing tasks algorithm dy-
namically assigns tasks to the server with the fewest currently
active tasks. If Oj represents the number of ongoing tasks on
server Sj , the scheduler assigns task Ti to:

Sj = arg min
j∈{1,...,N}

Oj .

This strategy balances the load in real time, ensuring that
no server becomes overwhelmed. While computationally
lightweight, it assumes that all tasks are of similar complexity
and duration, which may not always be the case in real-world
scenarios.

Time Series Forecasting: The time series forecasting al-
gorithm employs polynomial regression to predict the total
latency for each server based on its historical data. Let xk

represent the task index and L
(k)
j the latency for server Sj .

The latency prediction L̂j(x) is modeled as:

L̂j(x) = β0 + β1x+ β2x
2 + · · ·+ βdx

d,

where d is the degree of the polynomial, and β0, β1, . . . , βd

are coefficients determined via least squares fitting. Using this
model, the scheduler predicts the latency for pending tasks on
each server and incorporates a heuristic bias term Bj based
on the delay since the most recent task was assigned:

Total Predicted Latency for Sj = L̂j(x) +Bj .

The scheduler assigns the next task Ti to the server with
the lowest predicted latency. This method offers the highest
adaptability to dynamic workloads but incurs significant com-
putational overhead due to the forecasting process.

Fig. 3. System design illustrating the scheduler’s ability to select from N
ML servers for task distribution.

C. ML Server

Due to resource constraints, we simulated the ML server’s
functionality instead of using a full-fledged Vision-Language
Model (VLM). Each ML server retrieves the image, performs
a resizing operation using a convolution, and introduces a
randomized delay to mimic the latency of a real VLM. This
approach allowed us to simulate the effects of workload on
task completion times without requiring extensive computa-
tional resources.

D. Database

The final step in the system consolidates all processed data
into a single database. This database stores the image URL,
its original caption, the unique identifier, and the simulated
output from the ML server. By centralizing data, we ensured
consistency and provided an easy way to analyze the outcomes
of different scheduling strategies.

V. IMPLEMENTATION

Our system was built using a modular and containerized ar-
chitecture, ensuring scalability and efficient task management
across multiple components. The data for the system is sourced
from the MS COCO dataset [5], which provides image URLs
and corresponding captions. To streamline the implementation
and avoid runtime delays, the dataset is preprocessed to
include only the necessary metadata (image URL and original
caption). However, image retrieval is deferred to the ML server
simulation, which fetches images dynamically from the web-
hosted MS COCO dataset server. The dataset was accessed
using the pycocotools library, and the system processed
500 images for demonstration purposes. Proper citation of the
MS COCO dataset is recommended to acknowledge the data
source.

The communication between components is managed by
Apache Kafka, which acts as a message broker to facilitate
asynchronous data flow. Tasks are generated in JSON format
and sent to a Kafka topic by the producer, which operates in
a loop until all tasks are processed. Kafka ensures reliable
message delivery, and Zookeeper provides coordination for



the Kafka environment. Each message sent by the producer
contains an iteration ID, an image URL, and a corresponding
caption, structured as a JSON object.

Each system component, including the producer, scheduler,
and ML servers, is deployed as a Docker container to ensure
isolation and portability across environments. Kubernetes is
used to orchestrate the containers, managing deployments,
scaling, and monitoring. Kubernetes also handles the distri-
bution of containers across nodes, ensuring efficient resource
utilization. This containerized setup allows for rapid deploy-
ment and modular testing of individual system components.

The producer generates and streams tasks to Kafka. It first
downloads the required MS COCO metadata and extracts
image URLs and captions. Each task is structured as a JSON
object and sent to Kafka using the KafkaProducer API. A
small delay of 0.1 seconds is introduced between successive
messages to emulate real-world task arrival patterns. An ex-
ample of a JSON message generated by the producer includes
the fields: iter_id, image_url, and caption, where the
image URL points to an image hosted on the official MS
COCO dataset server.

The scheduler, running in its own Docker container, con-
sumes the JSON tasks from Kafka and implements various
load-balancing algorithms to assign tasks to simulated ML
servers. Each ML server retrieves the image from the MS
COCO dataset server, processes the image using a lightweight
convolution operation to resize it, and introduces a randomized
delay to simulate the variable latency of real-world Vision-
Language Model (VLM) inference tasks. The scheduler op-
timizes task distribution using algorithms such as Random,
Round Robin, and Time Series Forecasting, as detailed in
the Design and Architecture section. Once processed, the
results, including the original caption and simulated latency,
are forwarded to a database for persistent storage.

SQLite is used as the database for persistent data storage
due to its simplicity and lightweight nature, making it suitable
for a proof-of-concept implementation. The database stores the
final results of each task, including a unique task ID, the ID
assigned by the producer, the original image URL, the original
caption, the simulated caption generated by the ML server
(as a placeholder for real VLM output), and the total latency
recorded during task execution. The database schema includes
fields for all these attributes, ensuring that the consolidated
data is easily accessible for analysis.

In summary, the producer streams tasks (image URL and
caption) to Kafka, which delivers these tasks to the scheduler.
The scheduler assigns tasks to ML servers based on load-
balancing algorithms, and the ML servers fetch the images,
simulate processing, and forward the results to SQLite. The
SQLite database consolidates all data for evaluation, providing
a robust and extensible system for exploring the performance
of different scheduling algorithms.

VI. EVALUATION

A. Data

We utilized a subset of the MS COCO dataset [5], process-
ing 500 images to evaluate our scheduling algorithms. The
dataset provides a diverse range of images with corresponding
captions, enabling a comprehensive assessment of our system’s
performance across different image types and complexity lev-
els. By using a standardized dataset, we ensure reproducibility
and comparability of our results.

B. Baselines

We compared our proposed time-series forecasting algo-
rithm against multiple baseline scheduling strategies:

• Random Scheduling: Tasks are assigned to servers with
uniform probability, providing a baseline for unbiased
task distribution.

• Round Robin: Tasks are distributed cyclically across
servers, ensuring equal server utilization.

• Lowest Historical Average: Servers are selected based
on their historical average latency.

• Least Ongoing Tasks: Tasks are assigned to servers with
the fewest currently active tasks.

These baselines represent a spectrum of scheduling com-
plexity, from simple probabilistic methods to more informed
approaches involving latency cacheing and stastical analysis.

C. Metrics

To comprehensively evaluate the performance of our
scheduling algorithms, we focused on the following key met-
rics for comparison:

• Total Latency: Cumulative time taken to process all tasks
across the system.

• Average Task Latency: Mean time required to complete
individual tasks.

• Server Load Variance: Variation in task distribution and
processing time between servers.

• Throughput: Number of tasks processed per unit time.

VII. RESULTS

A. Random Scheduling

Fig. 4. Performance Analysis of Random Scheduling



Random scheduling represents a baseline approach with
probabilistic task distribution. Qualitative analysis reveals sig-
nificant variability in initial task allocation, with wide fluc-
tuations in per-server latency. However, over a large number
of tasks, the method approaches statistical equivalence with
round-robin scheduling.

Quantitatively, the random scheduling method demonstrates
a high variance in individual server performance. Short-term
measurements show substantial differences in task completion
times, with some servers experiencing extended wait times
while others remain underutilized. The cumulative effect,
however, tends to normalize across the entire task set, resulting
in a relatively uniform overall system performance.

Further analysis indicates that while random scheduling
provides a simple and computationally lightweight approach,
it lacks the strategic advantages of more informed scheduling
methods. The method’s primary weakness lies in its inability
to adapt to dynamic workload characteristics or server-specific
variations.

B. Lowest Historical Average Scheduling

Fig. 5. Performance Analysis of Least Average Historical Scheduling

The Lowest Historical Average scheduling method intro-
duces a more sophisticated approach by leveraging past server
performance data. By prioritizing servers with lower historical
latency, the algorithm aims to minimize overall system pro-
cessing time.

Qualitative observations reveal a more structured task distri-
bution compared to random scheduling. The method demon-
strates an ability to identify and prioritize consistently high-
performing servers. However, the reliance on historical data
introduces inherent limitations, particularly in dynamic envi-
ronments where server characteristics rapidly change.

Comparative analysis reveals a marked improvement in
overall system latency compared to random scheduling. The
method achieves a more balanced load distribution by prefer-
entially assigning tasks to servers with proven lower latency.
Nevertheless, the algorithm’s predictive power diminishes as
server performance becomes more variable or when new
servers are introduced to the system.

Fig. 6. Performance Analysis of Least Ongoing Tasks Scheduling

C. Least Ongoing Tasks Scheduling

Least Ongoing Tasks scheduling introduces a dynamic, real-
time approach to load balancing. The method continuously
monitors and distributes tasks based on the current workload of
each server, aiming to prevent any single server from becoming
overwhelmed.

Qualitative analysis reveals a highly responsive scheduling
strategy. The algorithm dynamically adjusts task allocation, en-
suring a more immediate balance of computational resources.
This approach proves particularly effective in scenarios with
heterogeneous task complexities and varying server capacities.

Quantitatively, this scheduling strategy demonstrates sig-
nificant improvements in load distribution compared to raw
historical-based methods. The algorithm maintains a more
consistent server utilization, with reduced variance in task
completion times. However, the method assumes a relatively
uniform task complexity, which may not hold true in more
complex real-world scenarios.

D. Time Series Forecasting Scheduling

Fig. 7. Performance Analysis of Time Series Forecasting Scheduling

Our proposed Time Series Forecasting scheduling method
represents the most sophisticated approach, integrating poly-
nomial regression with predictive task allocation strategies.
The method aims to proactively manage system resources by
anticipating potential bottlenecks.



Qualitative observations highlight the algorithm’s excep-
tional adaptability. By incorporating both historical perfor-
mance data and predictive modeling, the method demonstrates
an unprecedented ability to optimize task distribution. The
inclusion of a heuristic bias term addressing scheduling wait
time further enhances the algorithm’s responsiveness.

Comparative analysis conclusively demonstrates the supe-
riority of our proposed method. The time series forecasting
approach achieves the lowest overall system latency, most con-
sistent server utilization, and most balanced task distribution.
The closed form polynomial regression effectively captures
complex patterns in inference latencies, enabling more ac-
curate task allocation through linear interpolation of latency
predictions. Furthermore, the incorporation of a negatively-
weighted bias term over scheduling delays to the heuristic-
based task scheduling bolster’s the algorithm’s robustness to
ouliers in ML inference latencies.

E. Comparative Summary

When comparing all four scheduling methods, a clear pro-
gression in performance and sophistication emerges. Random
scheduling provides a baseline with minimal computational
overhead, while Lowest Historical Average and Least Ongoing
Tasks methods introduce increasing levels of strategic task
distribution. The Time Series Forecasting approach ultimately
represents the most advanced solution, offering unprecedented
predictive capabilities and system optimization. It successfully
addresses the limitations of previous methods by providing a
forward-looking, adaptive task distribution mechanism.

VIII. DISCUSSION

A. Limitations

Our research encountered several notable limitations involv-
ing resource availability and project scope, resulting in our
pivot from VLM inference to ML server simulations with
artificial inference loads:

• Computational Resources: The Chameleon Cloud clus-
ter provided CPU-only infrastructure, restricting our abil-
ity to perform optimized inference.

• Resource Sharing: Constraints in CPU and memory
resources necessitated a pivot from loading a full Vision-
Language Model to simulating server load.

• Simulation Approximation: Our ML server simulation
with artificial inference load, while informative, repre-
sents a simplified interpretation of the numerous com-
plexities within real-world VLM inference.

B. Implications

The proposed time series forecasting algorithm for ML
inference scheduling presents transformative implications for
scalable distributed machine learning systems. By dynamically
predicting variable inference loads, the algorithm effectively
mitigates bottlenecks, significantly reducing total latency in
ML inference tasks. This enables more efficient utilization of
server resources, providing a robust foundation for scalable

applications such as synthetic image captioning. The frame-
work’s ability to adapt in real-time to fluctuating workloads
not only ensures smoother operation but also enhances overall
system responsiveness, particularly in high-demand scenarios.

At scale, this approach unlocks opportunities for optimizing
computational workloads across diverse domains. By gen-
eralizing the algorithm beyond synthetic image captioning,
it can cater to a wide array of dynamic resource alloca-
tion challenges, from cloud-based inference pipelines to edge
computing networks supporting IoT devices. Furthermore, the
predictive capabilities of the time series model can inform
strategic infrastructure planning, guiding the distribution of
computational resources to minimize latency and energy con-
sumption. As distributed systems grow increasingly complex,
the adoption of such predictive scheduling techniques will
be instrumental in ensuring robust, scalable, and efficient
operation across a multitude of applications.

C. Future Work

Our exploration of time series forecasting for load balancing
in distributed machine learning systems provides a founda-
tional framework that can be expanded significantly. Conduct-
ing comprehensive ablation studies with diverse and complex
simulated server loads represents a promising direction. By
systematically varying workload characteristics, we can better
understand the boundaries and limitations of our predictive
scheduling approach. This effort would involve developing
more sophisticated simulation environments to mirror real-
world computational heterogeneity.

Extending the framework to actual Vision-Language Model
(VLM) inference is a critical next step. While our simulation-
based implementation offers valuable insights, integrating the
scheduling algorithm with a full-scale VLM would validate
and refine our approach. Such an endeavor necessitates ac-
cess to advanced computational resources, including GPU-
accelerated infrastructure, to support complex machine learn-
ing inference tasks. Additionally, developing a user-friendly
web interface for synthetic image captioning services could
democratize access to our research outputs.

The mathematical modeling underlying our time series
forecasting approach presents opportunities for refinement.
Investigating sophisticated polynomial regression methods,
employing machine learning models for precise latency predic-
tion, and incorporating heuristic bias terms could significantly
enhance predictive accuracy. Furthermore, generalizing our
load-balancing principles to broader applications, such as
cloud and edge computing, offers a pathway to uncovering
new dynamic resource allocation strategies. These extensions
would advance our understanding of adaptive scheduling in
distributed systems and reveal novel insights across computa-
tional domains.



IX. CONCLUSION

In this work, we proposed a statistical scheduling method
for total latency reduction of image inference tasks through
innovative time series forecasting. By integrating polynomial
regression and ongoing inference tracking, we developed a so-
phisticated load-balancing algorithm that dynamically predicts
and mitigates potential system bottlenecks.

Our experimental results demonstrate the method’s supe-
riority over traditional scheduling approaches, showcasing
significant improvements in task distribution, latency reduc-
tion, and resource utilization. While acknowledging its current
limitations, we believe this research provides a promising
foundation for more adaptive and efficient distributed machine
learning systems, with particular relevance to web accessibility
applications and latency-based inference forecasting.
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