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Abstract

Contrastive Language-Image Pretraining (CLIP) has demonstrated impressive per-
formance across a range of vision-language tasks by learning a shared embedding
space for images and text. In this project, we investigate methods to refine and
disentangle this shared embedding space by freezing the final later of the CLIP
model and retraining the penultimate layers using alterative objective functions.
Specifically, we explore variants of contrastive loss and sliced-Wasserstein distance
to better align semantic structure and improve embedding separability. Our goal is
to enhance representational quality while preserving the zero-shot generalization
capabilities of CLIP. We present both qualitative and quantitative evaluations of the
modified embedding spaces and discuss the trade-offs of using each loss function.

1 Introduction

Recent advances in multimodal representation learning, exemplified by models such as Contrastive
Language-Image Pretraining (CLIP) [L1], have significantly enhanced the integration of visual and
textual information. CLIP achieves robust zero-shot performance by aligning images and texts in a
shared embedding space through a contrastive objective, enabling generalization to previously unseen
classes without explicit supervision. However, despite these successes, CLIP’s embeddings are not
without limitations. Specifically, their learned representations can exhibit semantic entanglement,
making fine-grained distinctions among closely related concepts challenging and negatively affecting
performance in tasks requiring high semantic precision [[16} [15]].

Refinement and disentanglement of the learned embedding spaces represent critical challenges to
further improve the effectiveness of the multimodal model. Recent literature suggests that embed-
ding clarity and disentanglement directly influence interpretability and downstream performance,
particularly in high dimensional or sensitive domains [2, [13]. However, refining embeddings from
large pretrained models such as CLIP remains underexplored, particularly with regard to preserving
zero-shot capabilities, an essential benefit of these architectures.

In this work, we address these limitations by investigating novel embedding refinement methods for
CLIP. Our approach strategically freezes the final layer of the pretrained CLIP model, preserving
its well established semantic alignment, and selectively retrains the penultimate embedding layers
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using alternative objective functions designed to improve embedding separability and semantic
coherence. Specifically, we experiment with variants of contrastive losses, which directly enhance the
discrimination between semantic classes, as well as the sliced-Wasserstein distance, which has shown
promise in capturing nuanced geometric structures within high-dimensional spaces. Through this
methodological exploration, our study addresses one central question: Can the proposed embedding
refinement techniques enhance semantic clarity and disentanglement within CLIP embeddings?

Our primary contributions are as follows: (1) We introduce and evaluate targeted refinement tech-
niques using contrastive loss variants and sliced-Wasserstein distance, demonstrating their effective-
ness in improving embedding structure. (2) We provide a qualitative and quantitative evaluation
of embedding improvements across multiple vision-language tasks. (3) We offer insights into the
inherent trade-offs between the various loss variants presented in this paper.

The remainder of this paper is organized as follows. Section 2 provides background and discusses
related research. Section 3 describes our methodological framework in detail, including the choice
of alternative objectives and retraining procedures. Section 4 presents empirical evaluations, while
Section 5 discusses implications, limitations, and avenues for future research.

2 Related work

2.1 Contrastive representation learning

Contrastive learning has proven foundational in self-supervised learning by structuring the embedding
space through similarity based objectives. Frameworks like SimCLR [2]], MoCo [4]], and InfoNCE
[1O] have shown that such objectives can yield generalizable visual features by encouraging instance-
level discrimination.

While these methods operate in unimodal domains, they inspire the loss structures used in multimodal
pretraining regimes such as CLIP. However, their focus is typically on learning representations from
scratch. In contrast, our work repurposes contrastive losses for post hoc refinement—retraining
intermediate layers to re-shape the embedding geometry while preserving the structure induced by
CLIP’s pretraining.

2.2 Vision-Language models and CLIP

Multimodal models such as CLIP [[11] and ALIGN [5] learn joint embedding spaces by contrasting
aligned and misaligned image-text pairs. CLIP, in particular, has demonstrated strong zero-shot
performance by training on a vast corpus of noisy internet image-caption pairs, enabling it to
generalize without additional supervision.

Despite its scale and effectiveness, CLIP’s learned space can be semantically coarse-grained, often
collapsing subtle distinctions or allowing entangled concept clusters. Rather than retraining the model
end-to-end, we explore whether selectively updating earlier projection layers with structure-aware
losses can enhance semantic separability while preserving zero-shot generalization.

2.3 Embedding space refinement

A body of work has investigated how to improve the structure and interpretability of learned em-
beddings through constraints or post-processing. In deep metric learning, objectives are carefully
designed to shape the intra and inter class structure of representations [12]]. Other approaches apply
regularization to enforce orthogonality or sparsity within learned features [14]].

However, such work is typically applied in supervised or unimodal settings and often requires
extensive retraining. In contrast, we propose a minimal intervention approach: freezing CLIP’s final
projection layer and refining only upstream layers using lightweight auxiliary losses. This allows us
to isolate and evaluate the effect of loss-driven structure modification on the embedding space.
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Figure 1: Original CLIP concatenated embedding space on t-SNE.

2.4 Optimal transport and sliced-Wasserstein distance

Optimal transport (OT) offers a principled way to compare and align distributions, with applications in
generative modeling, domain adaptation, and structured data analysis. To address the computational
burden of classical OT, sliced-Wasserstein distances [[7] approximate the transport cost by averaging
1D projections, enabling efficient optimization in high dimensions.

Recent work has used these distances for set-based and distributional representation learning [9]. We
extend this paradigm to multimodal representation refinement, using the sliced-Wasserstein distance
not as a divergence metric between datasets, but as a training signal to reshape the joint embedding
distribution toward greater semantic coherence.

2.5 Zero-Shot Generalization and Disentanglement

Disentangled representations offer interpretability and often enable more reliable generalization,
particularly in zero-shot learning contexts. Methods like Semantics Disentangling for GZSL [3]] and
Disentangled Representation Learning for GZSL [8] propose architectures or supervision regimes to
isolate semantic factors for transfer learning.

However, these typically involve designing new model architectures or modifying the training data
pipeline. By contrast, we seek to retain CLIP’s architecture and zero-shot interface, modifying
only internal geometry through auxiliary loss terms. Our work contributes to understanding how
such targeted refinements affect the delicate balance between semantic clarity and generalization
performance.

3 Methods

3.1 Dataset

We evaluate our methods using the Hateful Memes dataset [6], a benchmark specifically designed
to probe multimodal reasoning and nuanced semantic understanding in vision-language models.
The dataset poses a particularly challenging task: detecting hateful content that is only discernible
through the joint interpretation of both image and text modalities. Many examples are intentionally
constructed to be ambiguous or benign in isolation, requiring the model to infer intent and tone
through subtle cross-modal cues. This makes the dataset an ideal testbed for assessing the semantic
disentanglement and alignment properties of multimodal embeddings. Its fine-grained distinctions
also offer a robust setting to evaluate whether refinements to CLIP’s embedding space enhance
interpretability and discrimination without sacrificing generalization.
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Figure 2: Samples from the dataset demonstrating how an image or text alone can be benign but
when together can become hateful.

3.2 Architecture and Fine-Tuning Strategy

We base our model on the pretrained CLIP architecture [[T1]], specifically using the ViT-B/32
variant. CLIP comprises separate vision and text encoders whose outputs are projected into a shared
multimodal embedding space via linear projection heads. To preserve the core semantic alignment
capabilities learned during CLIP’s large-scale pretraining, we freeze all encoder weights and the final
layer of the model. Only the image and text projection layers (i.e., the penultimate linear projection
layers) are marked trainable during our refinement phase for contrastive learning.

This selective fine-tuning strategy offers several critical advantages. First, it preserves the robust
semantic foundations established during CLIP’s extensive pretraining on internet-scale data, which
would be prohibitively expensive to replicate. Second, by isolating updates to the projection layers, we
maintain the high-level feature extraction capabilities of the encoders while gaining precise control
over the geometric structure of the embedding space. This approach strikes an optimal balance
between computational efficiency and representational refinement, allowing us to reshape embedding
relationships without compromising CLIP’s zero-shot generalization capabilities.

3.3 Training Pipeline

We employ the Hateful Memes dataset [6] as our evaluation benchmark, a choice motivated by its
inherent multimodal reasoning challenges. During training, each batch consists of paired images and
texts that are processed through frozen encoders and trainable projection layers to obtain normalized
image and text embeddings. We concatenate these embeddings to form a joint representation matrix of
shape [B, 2D], where B is the batch size and D is the embedding dimensionality. This concatenation
allows us to treat visual and textual representations as a unified semantic space during optimization.

Each batch is trained using a composite loss function:
['tolal = /\cLCLIP + As‘csep
where Lcpp is the original CLIP contrastive loss, Ly is a secondary separation-driven loss (either

contrastive or distributional), and )., A; are weighting coefficients. This dual-objective approach
maintains cross-modal alignment while enforcing improved semantic separation.

3.4 Contrastive Objectives

We explore several loss objectives designed to enforce semantic separability. Let u, v € R%'2 denote
text and image embeddings, respectively. Furthermore, let z := u-H- v be defined as the concatenation

e . (1) (@) .
of u and v. Furthermore, let S denote the similarity matrix, such that S;; = W Note that (7)

indexes a vector 4 from a batch B, and S € [—1, 1]IBIXIB]. Conversely, let Z € [1, 1]B1*IBI denote
2929 pinally, let LS and L(%) be the corresponding label

the similarity matrix, such that Z;; = HiE

matrices for each similarity matrix.




CLIP-Style Contrastive Loss: We include the standard CLIP contrastive loss as our foundational
objective. This loss maximizes cosine similarity between corresponding image-text pairs while
minimizing it between mismatched pairs:
1B
Leuw =5 Y (Ho(Si), L) + H(o(S.0), L))

i=1
Here, H is cross-entropy and o is the softmax function. Note that L(°) is a defined as a one-hot
probability vector and is defined as:

L=y =
Y 0 otherwise

In other words, the similarity between the text image pairs is maximized. Dissimilarity here is
encouraged implicitly by the softmax function; the smaller the logit similarities between non-pairs,
the closer the row or column probability vector gets to the one-hot vector. Retaining this loss ensures
that we preserve CLIP’s cross-modal alignment.

Weighted Supervised Contrastive Loss: Beyond pairwise matching, we use a weighted supervised
contrastive objective that explicitly incorporates class-level distinctions across the combined image-
text embedding set. Class labels are utilized to create a pull-push dynamic: embeddings with the
same class label are pulled together, while those with different labels are pushed apart, determined
by the mask matrix M. For clarity, we separate the attraction and repulsion loss terms in this
formulation. We define two mask Matrices, M (@) and M) to denote the attraction and repulsion
masks respectively.

@ _ 1 h(z") = h(z)) and i # j
0 otherwise.

ICEE h(z®) # h(z9)) and i # j
0 otherwise.

where h : R1924 — Y is a function that maps an embedding z to its corresponding class y € ).

Finally, our weighted supervised contrastive loss is defined as:

Lsc=——% o gl ;
1M 1o 1327 lo
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B

i=1

where the © operation is the Hadamard product and -y is a repulsive parameter for negative pairs.
This supervision encourages more semantically coherent clusters. With v = 0, supervised contrastive
loss is equivalent to cross entropy with an embedding mask. We call this setting "contrastive original".
We additionally experiment with values of v = 1, which we call "contrastive scaled" and v = 5,
which we call "contrastive weighted". The hyperparameter 7y essentially controls the importance of
repulsion during training.

3.5 sliced-Wasserstein Separation Loss

In contrast to contrastive loss, which operates on discrete pairs, we propose a distribution-level
separation mechanism using the sliced-Wasserstein Distance (SWD) [7]]. For each class label, we
treat the embeddings as empirical distributions and seek to maximize the pairwise distance between
these respective distributions per sampled training batch:

1
Loa=—7 Z SWD(P;, P;)
]

where P; and P; are the distributions of embeddings from class i and j respectively, and K is the
number of unique label pairs.



SWD approximates the optimal transport problem by projecting high-dimensional embeddings onto
multiple random 1D subspaces and computing the 1D Wasserstein distance between the projected
distributions. Formally, for L projections:

L
SWD(X,Y) = — EZ Isort(Xpe) — sort(Ype)|3

where p, are unit vectors sampled uniformly from the unit sphere.

This approach offers several theoretical advantages over traditional contrastive methods. By capturing
global distributional differences, it encourages inter-class separation while maintaining intra-class
coherence. Additionally, it is less sensitive to individual outliers and can better model the complex,
multimodal nature of semantic concepts for nuanced classification tasks.

3.6 Evaluation Metrics During Training

To monitor the refinement process, we use two primary metrics:

Centroid Distance: To assess semantic separability at the class level, we compute the Euclidean
distance between class centroids in the joint embedding space:

dcentroid = Hﬂhateful - Nnon—hateful”g

A higher centroid distance indicates clearer class-level separation and improved disentanglement. This
metric is particularly meaningful in our binary classification context, where maximizing the separation
between hateful and non-hateful content directly translates to improved decision boundaries.

Training Loss Trends: We track both Lcpp and Ly, across epochs using Weights & Biases to
ensure that improvements in separability do not come at the expense of cross-modal alignment.
Consistent descent in training loss and validation loss across epochs provides evidence of effective
optimization, while centroid distance offers insight into semantic structure evolution. By modifying
only embedding projection layers and retaining the geometry, we preserve CLIP’s zero-shot utility.

3.7 Implementation Details

We use the Adam optimizer with a learning rate of 5 x 10~* and batch size of 32, chosen after
preliminary experiments indicated this configuration provided stable convergence without overfitting.
For contrastive losses, we set the temperature parameter 7 = 0.07, which controls the sharpness of
the probability distribution and significantly impacts the quality of learned representation (too high
and distinctions become muddled, too low and optimization becomes unstable). Each experiment
proceeds for 100 epochs.

When using the sliced-Wasserstein loss, we apply 50 random projections per batch, striking a balance
between computational efficiency and approximation accuracy. Empirical testing showed that fewer
projections led to unstable training, while more projections yielded diminishing returns.

4 Experiments

4.1 Quantitative Evaluation via Centroid Distance

To assess the impact of each refinement method on semantic separability, we compute the average
centroid distance between the hateful and non-hateful samples in the joint embedding space. A
higher centroid distance indicates better separation between the two classes. As shown in Table[I] the
original CLIP model exhibits minimal separation, suggesting considerable overlap in the embedding
space. Interestingly, while some variants of contrastive loss improve the distance modestly, the
sliced-Wasserstein objective yields the highest centroid distance by a significant margin. This result
suggests that the geometric structure imposed by the Wasserstein-based refinement encourages
stronger clustering of semantically distinct samples.



Loss Objectives Centroid Distance
Original 0.0578
Original Contrastive 0.0054044
Scaled Contrastive 0.47258
Weighted Contrastive 0.37795
Supervised Contrastive 0.52027
sliced-Wasserstein 0.6404

Table 1: Final centroid distances between hateful and non-hateful sample clusters in the joint
embedding space after training convergence, evaluated on the test set. Higher centroid distances
indicate greater semantic separation between classes. Refer to Sections 3.4 (Contrastive Loss Variants)
and 3.5 (sliced-Wasserstein Distance) for a detailed explanation of each refinement strategy.

4.2 Qualitative Visualization using t-SNE

To better understand how each loss function shapes the embedding space beyond a single scalar
measure, we employ t-Distributed Stochastic Neighbor Embedding (t-SNE) [1]], a widely used
dimensionality reduction technique for visualizing high-dimensional data. t-SNE preserves local
structure and is suitable for inspecting clusters and neighborhoods in learned representation spaces.
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Figure 3: Concatenated embeddings visualized on t-SNE for No Change (upper left), Contrastive
Scaled (upper middle), sliced-Wasserstein (upper right), Contrastive Original (bottom left), Con-
strastive Weighted (bottom middle), and Supervised Contrastive (bottom left).

Across most objectives, including the original and contrastive variants, t-SNE projections of the
joint image-text embeddings reveal overlapping clusters, with limited class-level separation between
hateful and non-hateful samples. However, the sliced-Wasserstein based refinement produces a
notably different structure. As shown in Figure ] the embeddings exhibit clearer organization,
forming three prominent clusters corresponding to hateful content and a distinct fourth cluster for
non-hateful samples. This emergent structure suggests a more meaningful semantic geometry.

Further analysis of the visual and textual embeddings in isolation reveals a stark contrast. When
visualized separately, each modality forms only two broad groupings aligned with class labels,
lacking the nuanced sub-cluster structure found in the joint embedding space. This divergence
underscores the importance of cross-modal interaction in generating semantically rich representations
and demonstrates how the sliced-Wasserstein loss encourages latent structures that align better with
underlying intent.
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Figure 4: t-SNE visualization of SWCLIP embeddings after refinement with the sliced-Wasserstein
loss. From left to right: concatenated image-text embeddings, text-only embeddings, and image-only
embeddings. The concatenated space reveals well-separated clusters, including multiple subclusters
within the hateful class, indicating improved semantic disentanglement.

5 Conclusion

Our experiments demonstrate that among the tested objective functions, maximizing the sliced-
Wasserstein distance yields the most effective separation between hateful and non-hateful samples
in the shared CLIP embedding space. While traditional and supervised contrastive losses offer
modest improvements over the baseline, their embedding spaces still exhibit overlapping clusters
with limited semantic disentanglement. In contrast, the sliced-Wasserstein objective produces distinct,
interpretable clusters, often grouping hateful and non-hateful examples into separate, coherent
regions. This induces finer substructure in the embedding space, particularly within the hateful class,
suggesting a more nuanced capture of semantic variance.

This structural improvement is especially important in the context of multimodal data, where meaning
often emerges from subtle interactions between modalities. The t-SNE visualizations support this
observation, showing that text-only or image-only embeddings form broader and less informative
clusters compared to the fused space. Given the prevalence of sarcasm, indirect language, and
visual irony in datasets like Hateful Memes, a loss function that captures higher-order geometric
relationships such as sliced-Wasserstein proves more capable of uncovering latent semantics.

For future work, we aim to explore additional loss functions that can further enhance embedding
geometry, including those based on mutual information or adversarial contrastive training. Another
promising direction is the integration of new data modalities such as audio or user intent metadata to
better model context. Finally, moving beyond binary class labels to support multi-class or spectrum-
based interpretations of hatefulness could open the door to more realistic, nuanced classification tasks
and better alignment with real-world complexity.
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